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Abstract. The Stern-Gerlach interaction, between a moving charged particle endowed
with a magnetic moment and a radio-frequency e.m. field, is studied by means of a
semi-classical approach. Theoretical results are presented, and a possible experimental
check of this theory is discussed.

In the example of a charged particle with magnetic moment which travels inside
a time varying electromagnetic field, the expression of the Stern-Gerlach force in
the laboratory frame has been deduced [1,2] by means of some quite complicated
calculations. In fact we had to start from the particle rest frame (x′, y′, z′, t′) where
such a force assumes the usual form

�f ′
SG = ∇′(�µ∗ · �B′) = ∂

∂x′ (�µ
∗ · �B′)x̂+ ∂

∂y′ (�µ
∗ · �B′)ŷ + ∂

∂z′ (�µ
∗ · �B′)ẑ, (1)

where �µ∗ = g e
2m

�S is the magnetic moment. The partial derivatives and the fields
�E, �B, �E ′, �B′ are Lorentz boosted along the z-axis via the following transformations:

∂
∂x′ =

∂
∂x
, ∂

∂y′ =
∂
∂y
, ∂

∂z′ = γ
(

∂
∂z
+ β

c
∂
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)
, (2)

�E ′= γ( �E + c�β × �B)− γ2

γ+1
�β(�β · �E), (3)

and
�B′= γ

(
�B − β

c
× �E

)
− γ2

γ+1
�β(�β · �B). (4)

Moreover, bearing in mind that the force transforms as

�f⊥ = 1
γ
�f ′
⊥, �f‖ = �f ′

‖, and fz = f ′
z, (5)

1) Corresponding author:Mario.Conte@ge.infn.it



we obtain

�fSG = 1
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with
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fz = µ∗
xCzx + µ∗

yCzy + µ∗
zCzz (9)

where
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Let us consider a rectangular resonator, whose sides a, b, and c are respectively
parallel to the x, y, and z-axes, and which is excited in the TE011 mode. If the spin
orientation is 50% parallel and 50% antiparallel to �Bring ‖ ŷ, as commonly assumed
for describing an unpolarized fermion beam, and if we choose x = a

2
and y = b

2
as

beam coordinates, such a cavity is characterized [3] by the following parameters
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with vph = βphc = wave’s phase velocity, and field components
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Therefore the most important force-component is
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whose integration over the cavity length d gives the following expression of the
energy gained, or lost, by a fermion which crosses the cavity:
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having carried out the substitution ωt = ωz
βc
. The stationary wave conditions,

pertaining to the TE011 mode, imply that d = 1
2
βphλ; hence Eq. (16) becomes
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or in the ultrarelativistic limit (γ � 1 and β � 1)

∆U � µ∗B0
b

d
γ2(1 + cosβphπ) = 2µ∗B0

b

d
γ2 (βph = even integer). (18)

This energy exchange has to be compared to the one caused by the electric field,
whose evaluation [1,2] yields
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where x′ is the trajectory slope, for βph equal to an integer and for ultrarelativistic
particles.
As far as a spin-splitter [1,2] is concerned, we recall that spin up particles receive

(or loose) that amount of energy given by Eq. (18) at each rf cavity crossing.
Simultaneously, spin down particles behave exactly in the opposite way, i.e. they
loose (or gain) the same amount of energy turn after turn. The most important issue
is that the transferred energies add up coherently, i.e. the final energy separation
after NSS revolutions is

∆U↑↓ =
∑ {∆U↑ − (−∆U↓)} = 4

b

d
NSS µ∗B0 γ

2 � 4NSS µ
∗B0 γ

2. (20)

Summing up the energy contributions (19) from the electric field gives

(∆UE)tot =
∑

∆UE = κ
∑

x′ = 0, (21)

since the sign of x′ changes continuously due to the incoherence of betatron oscil-
lations.
Recalling that the spin-splitter principle requires a repetitive crossing of Ncav

cavities, and that after each revolution the particle experiences a deviation of its
momentum spread
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having made use of Eq. (18) with βph = 2 and B∞ = mc2

µ∗ � 1016 T for (anti)protons.

From Eq. (22) we find that the number of turns and the time ∆t needed for attaining
a momentum separation equal to 2(∆p/p) are respectively
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ζ
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)
, and ∆t = NSSτrev. (23)



TABLE 1. RHIC and HERA parameters

RHIC HERA
E(GeV) 250 820

γ 266.5 874.2
τrev(µs) 12.8 21.1

∆p
p 4.1 × 10−3 5 × 10−5

NSS 6.67 × 109 2.48 × 107

∆t 8.52 × 104 s � 23.7 h 523 s
µ∗ 1.41 × 10−26 JT−1

TABLE 2. MIT-Bates parameters

τrev 634 nsec b/d � 1
ωrev/2π 1.576 MHz B0 � 0.1 T
Nelectrons 3.6 × 108 · 225 = 8.1 × 1010 ωrf/ωrev 1820
γ 978.5 µ∗ 9.27 × 10−24 JT−1

Table 1 shows estimates for RHIC [4] and HERA [5] with

B0 � 0.1 T, and Ncav = 200.

Let us now evaluate a possible experimental test [6,7] of a polarimeter in the
MIT-Bates [8] ring (see Table 2), loaded with 500 MeV polarized electrons. For a
single rectangular cavity, with peak magnetic field B0, and for a bunch train made
up of N particles with polarization P , the average power transferred is the ratio
between the total energy transfer of Eq. (18) and the revolution period, namely

W � 2NP
µ∗B0

τrev

b

d
γ2. (24)

If we adopt a two coupled cavity scheme as a parametric amplifier, similar to the
one proposed for a different [9] application, we may obtain a huge amplification of
the small signal generated by the Stern-Gerlach interaction. Two cavities, tuned
at the same frequency and coupled either in a symmetric or antisymmetric mode,
can act as a parametric converter [10,11] provided that the frequency separation
between the two modes is equal to the revolution frequency of the beam. With an
initially empty level, the power transferred to this level is

W2 =
ωrf

ωrev
W � 2N P

µ∗B0

τrf

b

d
γ2 � 431P watt, (25)

where the cavity’s period is τrf = 1/frf and frf ∼ 3 GHz.
Comparing the energy exchanges (18) and (19) for x′ � 1 mrad, βph = 2 and

λ = 10 cm in the MIT-Bates ring, we obtain:
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∆UE

∆U
=

x′

8

β3
ph

β2
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λec

µ∗
1

γ4
= 1.72× 10−4, (26)



i.e. the spurious signal, depending upon the electric interaction is negligible with
respect to the measurable signal generated by the magnetic interaction. However,
numerical simulations with spin-tracking [12] and cavity-designing [13] codes should
be made by considering a real machine with a system of either rectangular or
cylindrical cavities.
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